
K, n, rheological constants; p, density; g, acceleration of gravity; %, coefficient  of surface tension; t, t 6, di~aensional 
and dimensionless times; IIi, dimensionless complexes; v, Vmax, velocity of  lowering, maximal velocity of lowering; ~, 
qo, dimensionless functions. 
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EFFECTIVE VISCOPLASTICITY PARAMETERS OF SUSPENSIONS 

V. A. Buryachenko UDC 539.,1:541.24 

The effective field method is used to determine effective parameters of  suspensions consisting of  rigid 
ellipsoidal inclusions in a nonlinear viscoplastic matrix. 

1. General Relationships. Within a macroregion z with characteristic function Z we will consider a suslgension 
containing a statistically large number of rigid ellipsoidal inclusions and an incompressible viscoplastic mat;ix, the 
mechanical properties of  which are described by a dissipative function 

(1) 
D = k V ~ +  1 y n (~z)(sijeij) + ae~jeij. 

For definiteness, we will consider the variant of a power-law liquid r~(tke ) = r;o(I2")( n - 1)/2, where 12" = ~ kg 9ke 
is the second invariant of  the deformation rate deviator ~ kg = ekg - -  t i i / 3 ,  ~i i  = 0 from the incompressibility cordition. 

The matrix contains a Poisson set X = (V k, x k, a i, Wk) of ellipsoidal rigid inclusions v k with characteristic 
functions V k, centers x k forming a Poisson set, semiaxes a i (a 1 > a 2 > a 3) and set of  Euler angles w k with the inclusions 
having identical dimensions but various orientations. We will assume the random fields X, a, e, e ergodic and stati:;tically 
homogeneous, so that averaging over the set can be replaced by averaging over characteristic volumes: 

<(.))==v-~'y( . )Vc~(x)dx,  v ~ = m e s v ~ ,  ~ = 0 ,  I, ..., 

< (.)> = ( r n e s z ) - ~ ( . ) Z ( x ) d x ,  

V o = Z--V, V = ZkVk. In the future we will use the notation (. I xl;x2) for  the conditional average over the set X, where 
at x 1, x 2 we have inclusions with x 1 # xg. 
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Fig. 1. Experimental  data and calculated curves of  relative change in 
suspension viscosity. 

Fig. 2. Calculated curves of  relative change in suspension plasticity limit. 

For Eq. (1) we have a local associative law of component  flow 

(Yi j  ~ 

Without subscripts the flow law has the fo rm 

keii 

-l/ AhzSkZ 
n + l  

+ ~ 'q (e~z) eii + aeij. 

(2) = Lo (e + be), 

where for the isotropic tensors L o, b we use the notation: 

Lo ----- (3ko, 2t~o) : 3koN1 + 2~oN.., b = (3b~, 2b2), 

N'l~ikl = 6~j6kz/3, N~im = (6ih6jz + 6iz6j~ - -  26zj6~t13)/2, 
1 n - - 1  

2l~o = k(e~je,~) 2 + - - ~ q 0  "J m , 2b~ = a/2~o. 

In obtaining the final results we take the parameters k o and b 1 infinite. It is assumed that the matrix hydrodynamics are 
determined by the equations of  creeping flow, and the only interaction between inclusions is hydrodynamic.  Brownian 
motion will be neglected. Equation (2) is nonlinear, and in order to use the well known methods of  the linear theory of 
elasticity [1, 2] to obtain effect ive rheological laws we must linearize that equation, having made the additional 
assumption L o, be = const within the matrix. In doing this we have made the assumption of homogeneity of  accumulated 
plastic deformation and the second invariant of  the deformation rate tensor I2o = %eij = (eij~ij)o within the matrix. 

Introducing the modif ied deformation rate w(x) = e(x) - -  %,  where % = --be ,  we obtain the equilibrium equation 
of the suspension 

VLo w = - - V  {[L] w - -  L/z1}, (3) 

where V is the symmetrized gradient operation; a I = --%V(x);  L 1 is the inclusion parameter ,  analogous to Lo; [L] = 

L I - -  L o. 
T o  the accuracy of the notation used, Eq. (3) coincides with the analogous expression of thermoelastic 

equilibrium of  an inhomogeneous medium [ 1 ]. Therefore  we can make use of  the effect ive field method for  its solution. 
We then use the fundamental  solution G corresponding to Eq. (3) to t ransform the latter to an integral equation, 
centralizing which we obtain 

(4)  
w (x) = ( w ) - -  ~ U (x - -  V){[L] w - -  Lip  h - -  [ ( [L] wo > - -  ( L I ~  1 ) l }  ely, 

where U(x - -  y) = v v G ( x  - -  y). 
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To define the effect ive viscoplastic property tensor L* and the macroscopic plastic deformation tensor oe* in the 
equation 

( ~r ) = L* ( ( s ) - -  ~z*) (5) 

we must evaluate the tensors A and H in the relationships (trV) ffi A(e), (crY) = H at a = 0, e ~ = (a) ~ 0 and ~o ~ 0, a ~ = 
0 respectively. Then 

L* --- L o ( I ~  A) -~, o~* = ( O:o+ o~ (x) ) ~ Ld-IH. (6) 

2. Evaluation of L*, oe*. We will specify the suspension structure by a binary distribution function ~es(v m ] Vk) --  
the probability of  an inclusion distribution in the region v m for fixed v k. We assume that r is centrally s)mmetric: 

q~ (vm]vh) = * (v~)(1 - -  V~) n ~ (rues z) -1, (7) 

where n r is the numerical inclusion concentration, related to the volume concentration c = 4/3 ralaZaanr Vkm" is the 
characteristic function of  a sphere with center at x k and radius akin = a s + al; ~Wm) is the density of  the distribution w m, 
normalized to the condition (~b(Wm)) --- 1. 

We will define an arbitrary realization of  the field X and consider the field ~(x)  (which we will term the 
effective field below), x~v k, in which the inclusion is found: 

(8) 
F ( x ) ~ = o ~ 2 4 7  x)[--L~ -l (y) ~ (v) § oq (y)] - - [ ( - - L o l e >  § ( c q ) l } d y ,  

where V(y; x) -= V(y)--Vk(X); F(x--y) -- --Lo(I6(x--y) + U(x--y)L o) is Green's internal stress tensor. The field X and 
hence -~(x) are random; to find mean values of functions of -5(x) we introduce the effective field hypotheses [1, 2]: 

HI )  the field -~k -- "3"(Xk) is homogeneous in the vicinity of  each fixed inclusion vk; 
H2) each m (m > 1) inclusions are located in an inhomogeneous effective field ~'x ..... ra, independmt  of  the 

properties of the inclusion considered. 
The homogeneous field ~-k uniquely defines the field within the inclusion 

(9) 
a+ = Bk (~h - -  Qkal), B~ = (LoPh) -~, Q~ : Lo (I - -  PkLo), 

where the constant tensor Pk = - - fU(x--y)Vk(y)dy (x~vk) is independent of  the dimensions of the ellipsoid and can be 
expressed in a known manner in terms of  the Eshelby tensor [1, 2]. 

Substituting Eq. (9) in Eq. (8), we find 
(10) 

~(x) = ~ ~  [ F (x - -  V)([L~-~B (V) ~(Y) + t3 (V) ~1 (~)1 V (v; x) - -  [ ( 0 B~ 5 + ( B% 5 ]} dr.  

We now average Eq. (I0) over the set X(. ] Vk) with the aid of  Eq. (7): 
( 1 0  

(~-(x) ) -= e ~ - -  .[ P (x - -  V){ ( [ L ~ B  (b) ~'(g) + B (V) ~z~ (v)l I/(y; x)lg; x ) - -  [ ( Lo lB  ~ ) + ( Bosx ) ]} d b. 

To calculate the  arbitrary moments in Eq. (11) we make use of hypothesis H2 and the assumption "~1~ = "3 -- 
const. Solving the problem of  binary interaction of point inclusions [1] with centers at x and y, located in an infinite 
matrix under the action of  a field defined at infinity -e, from Eq. (11) we find <'e>, whereupon from Eqs. (~), (6) we 

obtain [1, 2] L* = Lo ( I -  C ( BV 5 )-~, o~* = Lo/L*%, 

C = ( I +  ( Q ) Lo ~ - ] F ( x - g ) L 7  ~ ( B V )  Y ( x - - y ) U (  ~ (, BV ) (1 ~ (12) 

r 

3. Evaluation of Medium Loading Function. The deformation properties of  the medium can be described by the 
dissipative function of  the entire macrovolume 

( D ) ~ L * ( ( e  ) --c~*) ( 8 )  , (13) 

which in the case of rigid inclusions can be represented in the form 
04 )  ( D  \/ = ( 1 - -  c) ( as ) 0. 
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For rigid inclusions in an incompressible matrix the tensors B, D, L*/L ~ are independent of the theological properties 

of the matrix and are defined solely by the geometric microstructure of the medium. Then to obtain the explicit 
dependence of (D) on (~)it is necessary to use Eqs. (13), (14) to evaluate the quantity 12o: 

I,.o= ( eijeij ) = Lo 1 ( ( p c )  --Lob ( e ) 0 ( e ) 0 ) =  (15) 

=(1- -c ) - t (L*/Lo ( e )  ) ( e  ) .  

Substituting Eq. (15) in the expression for L o, proportional to L*, we define the dissipative function of the medium, Eq. 

(13):' ( D ) = k ] / i l  --c)(L*/L o < e ) )  ( e ) H- (16) 
1 

q - 2 ~ l ( L * / L ~ 1 7 6  ( e ) ) ( e ) .  

In the case of preferred orientation of the ellipsoids the ratio of the tensors L*/L o may be anisotropic, so that 
the effective parameters of the medium will also be anisotropic. In the case of isotropic L* we denote the components 
of the isotropic tensor L*/L 0 by (3f1(c), 2f2(c)), ft(c) = pp. For an incompressible matrix, L*/L o is independent of the 
matrix rheologieal characteristics and is defined solely by the geometric structure of the inclusions. Then the value of 
L*/L o coincides with the analogous effective quantity of the linear-elastic problem for rigid inclusions in an 
incompressible matrix [2]. For a macro-isotropic suspension we obtain a dissipative function (1) with effective 
parameters 

n + l  ( l - - n )  n - - 1  

k* = k -I/il - -  c) fz (c); ~]* = ~10[~ (c) "~-- (1 --- c) -2 ( ~ 9ij ) ( 9iy ) )-T--, (17) 

a* = a[z (c) 

and loading function {alj a) {aij n) -- k* with active stress tensor deviator (a.. a) ---/el, ) -- 6i: {Okk)/3 --  rl* (eij) -- a* {eij ). 
�9 �9 1,1 , , J ,  �9 J 

It follows from Eq. (17) that to predict the effective parameters k ,  T/ , a it is necessary to know only the 
rheological data for the matrix and the function f2(c): The latter can be found not only by calculation, for example, with 
the effective field method, but also from indirect experiments. For Newtonian suspensions with n = 1, k = a = 0 it is 
sufficient to determine the relative change in viscosity ~*/rlo of the suspensions with the same fractional amount of filler 
as the composition with non-Newtonian properties, whereupon f2(c) --- ~*/%. 

Example. For spherical inclusions of a single size the value of f2(c) was found previously [2]: f~.(c) = 1 + 5/2. 
c(1--31c/16) -1. Figure 1 shows experimental data of [3] for n = 1 and [4] for n = 0.41, constructed in the coordinates 

n--1  

0 =,In{~* [~10 (<~i~)<a~j)) 2 ]-~} N c. The data of [3] correspond to a Newtonian suspension of rigid spheres of a single 
size in water, while the data of [4] describe the nonlinear rheological properties of a suspension of calcium carbonate 
in fused polypropylene at 200~ Curves 1-3 were calculated for n = 1 with equations from [5], the present Eq. (17), 
and from [6]. Curves 4, 5 are for n = 0.41 by the present Eq. (17) and [7] respectively. In the coordinate system used the 
curves are independent of the parameter rio. The refinement of the calculation by the effective field method is due to 
consideration of binary inclusion interaction. For comparison Fig. 2, curves 1, 2 shows (k*/k) ~" ~c, calculated with Eq. 
(17) and after [6], independent of the matrix rheological properties. 

NOTATION 

k, plasticity limit; t/(~ij), nonlinear viscosity; a, ordering parameter; oij, eli, eij, stress, deformation rate, and 
accumulated plastic deformation tensors; X = (V k, x k, a i, (Ok) , set of inclusions v k with characteristic functions V k, 
centers x k, semiaxes ai, and Euler angle set wk; w, modified deformation rate; G, fundamental solution of Lamet 
problem; 9(Vm/Vn) , arbitrary distribution density; ~b(o~m), density of distribution win; -~ and ~1 ..... n, effective fields; x, 
y, coordinates. 
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