K, n, rheological constants; p, density; g, acceleration of gravity; a,, coefficient of surface tension; t, ts, diraensional
and dimensionless times; II;, dimensionless complexes; v, v, .., velocity of lowering, maximal velocity of lowering; ¥,
¥,, dimensionless functions.
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EFFECTIVE VISCOPLASTICITY PARAMETERS OF SUSPENSIONS
V. A. Buryachenko UDC 539..:541.24

The effective field method is used to determine effective parameters of suspensions consisting of rigid
ellipsoidal inclusions in a nonlinear viscoplastic matrix.

1. General Relationships. Within a macroregion z with characteristic function Z we will consider a suspension
containing a statistically large number of rigid ellipsoidal inclusions and an incompressible viscoplastic matrix, the
mechanical properties of which are described by a dissipative function
_— 1 (1)
D=k Vee;+ 5N (Bn)(ess8:s) +- aeyj8s;.

For definiteness, we will consider the variant of a power-law liquid n(e,p) = np(I;)® ~1/2, where I," = 3,4 9,4
is the second invariant of the deformation rate deviator 3 4 = €, — €;;/3, &; = 0 from the incompressibility cordition.
The matrix contains a Poisson set X = (Vy, x4, al, w,) of ellipsoidal rigid inclusions v, with characteristic
functions V), centers x, forming a Poisson set, semiaxes a! (a! > a2 > a®) and set of Euler angles w, with the inclusions
having identical dimensions but various orientations. We will assume the random fields X, o, €, & ergodic and statistically

homogeneous, so that averaging over the set can be replaced by averaging over characteristic volumes:
() a :-1;05_1 j‘ (')Va(x)dxa Ea = mesv,, o =0, I s
() = (mes)™ [ () Z(x) dx,

Vo=2Z—V,V =%V In the future we will use the notation ( | x33%5) for the conditional average over the set X, where
at x;, X, we have inclusions with x; # x,.
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Fig. 1. Experimental data and calculated curves of relative change in
: suspension viscosity.

Fig. 2. Calculated curves of relative change in suspension plasticity limit.

For Eq. (1) we have a local associative law of component flow

ke n--1
()'i s == . .s
J _l/éh_le'h—l + 9 N (Shl) €ij + Qae;j.
Without subscripts the flow law has the form
o = L, (e + be), ()

where for the isotropic tensors L, b we use the notation:

Lo = (3kg, 2p) = 3kgNy + 2u,Nz, b = (3by, 2b,),
Nygir = 6:580/3, Nosjpr = (81851 + 685 — 28:58,1/3)/2,

1 n—1
Oy = k(B 4+ f; Molesses) Z o 2by = a/2ps.

In obtaining the final results we take the parameters kg and b, infinite. It is assumed that the matrix hydrodynamics are
determined by the equations of creeping flow, and the only interaction between inclusions is hydrodynamic. Brownian
motion will be neglected. Equation (2) is nonlinear, and in order to use the well known methods of the linear theory of
elasticity [1, 2] to obtain effective rheological laws we must linearize that equation, having made the additional
assumption Ly, be = const within the matrix. In doing this we have made the assumption of homogeneity of accumulated
plastic deformation and the second invariant of the deformation rate tensor Ipg = €;&; = (&;;;;)p within the matrix.

Introducing the modified deformation rate w(x) = &(x) — oy, Where oy = —be, we obtain the equilibrium equation
of the suspension

viw = —vy{lllw— Lo}, (3)

where V is the symmetrized gradient operation; ¢; = —gV(x); L, is the inclusion parameter, analogous to Lg; [L] =
Ly — L.

To the accuracy of the notation used, Eq. (3) coincides with the analogous expression of thermoelastic
equilibrium of an inhomogeneous medium [1]. Therefore we can make use of the effective field method for its solution.
We then use the fundamental solution G corresponding to Eq. (3) to transform the latter to an integral equation,
centralizing which we obtain

4)
wx)= (w) “‘_S‘U(x"‘y){[L]w_Llo‘l—[<[L]wo>“—< L1a1>]}d!/y

where U(x — y) = VV-G(x — y).
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To define the effective viscoplastic property tensor L*and the macroscopic plastic deformation tensor o in the
equation

(o) =L*({e) —a¥) &)

we must evaluate the tensors A and H in the relatxonshaps {oV)=Ale), (oV)=Hata=0,0"= {0) #0and a3 #0, o’ =
0 respectively. Then

= LU —A)", oF = (ata,(0)) —Li 'H. (6)

2. Evaluation of L*, o*. We will specify the suspension structure by a binary distribution function «:(vm] Vi) —
the probability of an inclusion distribution in the region v, for fixed v,. We assume that ¢ is centrally symmaetric:

@ (Umfvs) = § (Om)(1 — Vim) 1° (1mes 2)72, 7

where n® is the numerical inclusion concentration, related to the volume concentration ¢ = 4/3 ma'a%a%n®/3; V.’ is the
characteristic function of a sphere with center at x, and radius a,,, = a% + al; Y¥(w,)) is the density of the distribution w,,,
normalized to the condition (¥{w, )} = 1.
We will define an arbitrary realization of the field X and consider the field o(x) (which we will term the
effective field below), x€vy, in which the inclusion is found:
(8)
G0 =0+ [Tt — V& A= L @ o) + o @] —1(~Li'e) + (o) }dy,

where V(y; x) = V(y)—V(x); I(x—y) = —Ly(I6(x—y) + U(x—y)Ly) is Green’s internal stress tensor. The ficld X and
hence o(x) are random; to find mean values of functions of o(x) we introduce the effective field hypotheses {1, 2}

H1) the field o, = o(x,) is homogeneous in the vicinity of each fixed inclusion vy;

H2) each m (m > 1) inclusions are located in an inhomogeneous effective field &1’ .., m» independant of the
properties of the inclusion considered.

The homogeneous field o, uniquely defines the field within the inclusion

+ = By (0 — Quat)), B = (LoPr)™ Q= Lo(/ — PyLy),

where the constant tensor P, = — f U(x—y)V,(v)dy (x€v, ) is independent of the dimensions of the ellipsoid and can be
expressed in a known manner in terms of the Eshelby tensor [1, 2].
Substituting Eq. (9) in Eq. (8), we find

(%)

_ o {10}
()= — [T x—{Le'B@ o) +B@auWIV & %) —[{Li'8a) + (Bay 1} dy.

We now average Eq. (10) over the set X(- I v} with the aid of Eq. (7):
- f o= an
(0(x)) =0 — [T x—n{ < ILT'BEH o)+ BE o @V g 0y x) —1<Lo Boy + (Boy )1y dy.

. To calculate the arbitrary moments in Eq. (11) we make use of hypothesis H2 and the assumption ¢,y = 0 =
const. Solving the problem of binary interaction of point inclusions {1] with centers at x and y, located in an infinite
matrix under the action of a field defined at infinity @, from Eq. (11) we find <o>, whereupon from Egs. (¢), (6) we

obtain {1, 2
.21 L# = Ly(I —C { BV Y, af = Ly/L¥a,,

=+ Q) L' — [ Tw—yLs' (BV) Tr—y)Li' CBV) (I— (12)
— V12 () dy) ™.

3. Evaluation of Medium Loading Function. The deformation properties of the medium can be described by the
dissipative function of the entire macrovolume

(DY =L¥({e)> —af)e),
which in the case of rigid inclusions can be represented in the form

(D> =(1—¢<0g),

(13)

(14)
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For rigid inclusions in an incompressible matrix the tensors B, D, L* /Lo are independent of the rheological properties
of the matrix and are defined solely by the geometric microstructure of the medium. Then to obtain the explicit

dependence of (D) on (£} it is necessary to use Egs. (13), (14) to evaluate the quantity | P~
1202<8ij8ij>=Lo_l(<03>“—Lob<e>o<8>o)= (15)
== ML¥Ly <e))<e).
Substituting Eq. (15) in the expression for L, proportional to L*, we define the dissipative function of the medium, Eq.

a3y (DY =k VI —L¥L, (ey)(e) +

(16)
1
+7Tl(L*/Lo<8>)<€>+a(L*/Lo (er)<e).

In the case of preferred orientation of the ellipsoids the ratio of the tensors L*/Lo may be anisotropic, so that
the effective parameters of the medium will also be anisotropic. In the case of isotropic L* we denote the components
of the isotropic tensor L”/Lg by (3f,(c), 2f,(c)), f;(c) = oo. For an incompressible matrix, L*/Lg is independent of the
matrix rheological characteristics and is defined solely by the geometric structure of the inclusions. Then the value of
L*/Lo coincides with the analogous effective quantity of the linear-elastic problem for rigid inclusions in an
incompressible matrix {2]. For a macro-isotropic suspension we obtain a dissipative function (1) with effective
parameters

: _f_ (1——rL) n—1
“‘kv(l-c)fz(’—") n* —ﬂofz(c) (I—0¢ E (Coid (o)) ° 1 an
a* = af 2 ()
and loading function (;;®) ("ua) = k* with active stress tensor deviator {o ,Ja) = ( ) u (O3 — N’ (e u) ( )

It follows from Eq. (17) that to predict the effective parameters k", n", a* it is necessary to know only the
rheological data for the matrix and the function f,(c). The latter can be found not only by calculation, for example, with
the effective field method, but also from indirect experiments. For Newtonian suspensionswithn = 1, k =a =0 it is
sufficient to determine the relative change in viscosity r;*/r)0 of the suspensions with the same fractional amount of filler
as the composition with non-Newtonian properties, whereupon f,(c) = r)*/n0

Example. For spherical inclusions of a single size the value of fy(c) was found previously [2]: fy(c) = 1 + ¥/,
c(1—31¢/16) 1. Figure 1 shows experimental data of [3] for n = 1 and [4] for n = 0.41, constructed in the coordinates

n—1

8=In{n* [no(<3:><3:p) ? 171} ~ ¢. The data of [3] correspond to a Newtonian suspension of rigid spheres of a single
size in water, while the data of [4] describe the nonlinear rheological properties of a suspension of calcium carbonate
in fused polypropylene at 200°C. Curves 1-3 were calculated for n = 1 with equations from [5], the present Eq. (17),
and from {6]. Curves 4, 5 are for n = 0.41 by the present Eq. (17) and [7] respectively. In the coordinate system used the
curves are independent of the parameter n,. The refinement of the calculation by the effective field method is due to
consideration of binary inclusion interaction. For comparison Fig. 2, curves 1, 2 shows (k"*/k)? ~c, calculated with Eq.
(17) and after [6)], independent of the matrix rheological properties.

NOTATION

k, plasticity limit; n(e; ;)» nonlinear viscosity; a, ordermg parameter; oy, &;, €j;, stress, deformation rate, and
accumulated plastic deformatlon tensors; X = (Vy, Xy, al, w,), set of inclusions v, with characteristic functions Vi
centers x,, semiaxes a;, and Euler angle set w,; w, modified deformation rate; G, fundamental solution of Lamet
problem; o(vy,/vy), arbitrary distribution density; ¥(w,), density of distribution w,; 0 and 7, __,, effective fields; x,
y, coordinates.
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